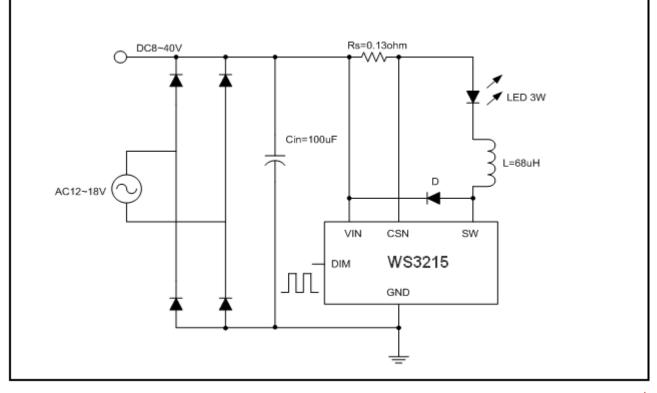


40V/1.5A Step-down High Brightness LED Driver

Features

- Simple low parts count
- Wide input voltage range: 8V to 40V
- Up to 1.5A output current
- Output current limit protection
- Over temperature protection
- Single pin on/off and brightness control using DC Voltage or PWM
- Typical 5% output current accuracy
- Inherent open-circuit LED protection
- High efficiency (up to 97%)
- Adjustable LED constant current

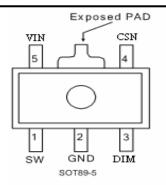

Applications

- MR16 LEDs
- Automotive lighting
- Low Voltage industrial lighting
- illuminated signs

Typical Application Circuit

Description

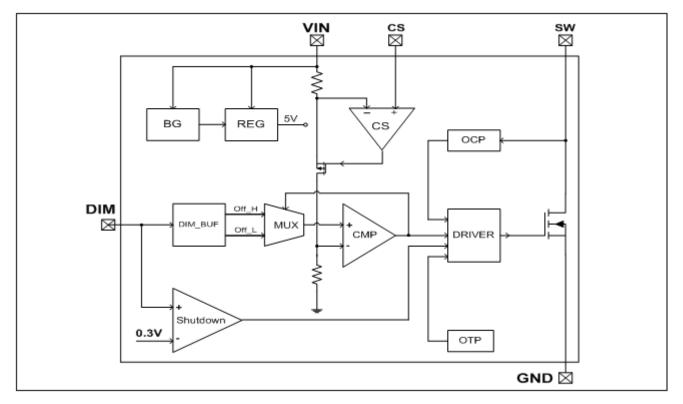
The WS3215 is a continuous conduction mode inductive step-down converter.designed for driving single or multiple series LED efficiently from a voltage source higher than the total LED chain voltage. The device operates from an input supply between 8V and 30V and provides an external adjustable output current of up to 1.5A.Depending upon supply voltage and external components, the WS3215 can provide more than 10 watts of output power. The WS3215 includes the power switch and a high-side output current sensing circuit .which uses an external resistor to set the nominal average output current, and a dedicated DIM input accepts either a DC voltage or a wide range of pulsed dimming. Applying a voltage of 0.3V or lower to the DIM pin turns the output off and switches the device into a low current standby state. WS3215 using SOT89-5 package .



Rev.1.0 July.2011

W

Pin Definition and Device Marking



Pin Name	Pin No.	Pin Type	Function Description	
SW	1	Output	Drain terminal of internal Power MOSFET.	
GND	2	Power	Signal and Power GND.	
3 Used for enabling		Floating	Used for enabling Switch and Dimming with either a DC voltage or	
DIM		Floating	PWM input signal .	
CSN	4	Current	Used for high-side output current sensing with an external sensing	
CSN		Monitoring	resistance between CSN and VIN.	
5 Frequency Powe		Frequency	Power supply input. Bypass with capacitor as close to the device as	
VIN		Setting	possible .	
Exposed BAD	6	Floating	Connected to GND for thermal considerations and pasted on PCB for	
Exposed PAD		Fillaulig	reducing thermal resistance.	

Pin Function Description

Block Diagram

W

Ordering Information

Package	IC Marking Information	Purchasing Device Name
SOT89-5 Pb-free	WS3215 TP	WS3215

Recommended Operating Condition

Symbol	Parameter	Value	Unit
VIN	Input voltage	8~40	V
TA	Operating temperature	-20~85	°C

Absolute Maximum Ratings (Note 1)

Symbol	Parameter	Value	Unit
V _{IN}	DC Supply Voltage	-0.3~50	V
SW	Drain voltage of internal Power MOSFET	-0.3~50	V
CSN	Output current sensing voltage(relative toV _{IN})	0.3~-6.0	V
DIM	Switch enable and Dimming Voltage	-0.3~6.0	V
Isw	Maximum Output Current	1.8	A
P _{DMAX}	Power Dissipation(Note 2)	1.5	W
P _{TR}	Thermal Resistance,SOT89-5(θJA)	45	°C/W
TJ	Junction Operating Temperature	-40 to 150	°C
T _{STG}	Storage Temperature	-55 to 150	°C

Note1: Absolute maximum ratings are limits beyond which damage to the device may occur. Operating Ratings are conditions for which the device is intended to be functional, but device parameter specifications may not be guaranteed. For guaranteed specifications and test conditions, see the Electrical Characteristics.

Note 2: Higher temperature leads to the necessary decreasing of maximum power dissipation. It also decided by both TJMAX, θJA,and ambient temperature TA. The maximum accepted power is formulated as PDMAX = (TJMAX -TA)/ θJA or the value among the lower ones in the absolute maximum rating.

ESD Information

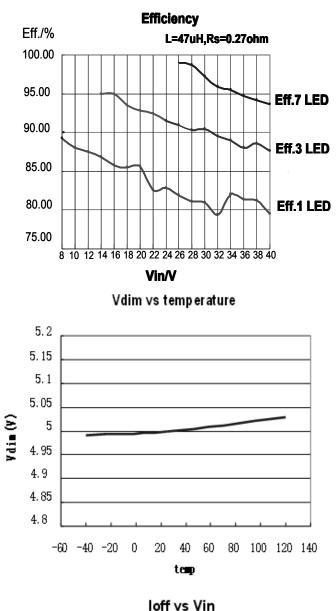
Symbol	Parameter	Value	Unit
Vesd-HBM	Human body model on all pins(Discharge with a 100pF capacitor through a $1.5k\Omega$ resistance.)	4	κv
Vesd-mm	Machine model on all pins	400	V

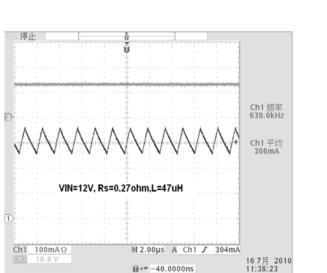
W

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
V _{IN}	Supply Voltage	-	8		40	V
V _{UVLO}	V _{IN} UVLO Threshold	V _{IN} Dscreasing		6.8		V
V _{UVLO,HYS}	V _{IN} UVLO Hysteresis	V _{IN} Increasing		500		mV
Fsw	Maximal Oscillating Frequency				1	MHz
Sensing Cur	rent					
V _{CSN}	Average Sensing Voltage	V _{IN} -V _{CSN}	95	100	105	mV
V _{CSN_hys}	Sensing Voltage Hysteresis			±10		%
Icsn	Input Current from CSN	VIN-VCSN=50mV		8		uA
Turn-off Curi	rent					1
IOFF	Turn-off Current	V _{DIM} <0.3V		50		uA
DIM Input			1	11		1
VDIM	Internal Supply Voltage	DIM floating		5		V
Vdim_н	High Level for DIM Input Voltage		2.5			V
V _{DIM_L}	Low Level for DIM Input Voltage				0.3	V
V _{DIM_DC}	Dimming Rang with a DC Voltage		0.5		2.5	V
f _{DIM}	Maximal PWM Dimming Frequency	f _{osc} =500kHz			50	kHz
	Duty Range of PWM Dimming					
Dpwm_lf	at low frequency	f _{DIM} =100Hz	0.02%		1	
	PWM Dimming Ratio at low frequency			5000:1		
	Duty Range of PWM Dimming	6 001/11	4%		1	
D _{PWM_HF}	at high frequency	f _{DIM} =20KHz				
	PWM Dimming Ratio at high frequency			25:1		
	Pull-up Resistance between DIM and			10		
Rdim	internal Supply Voltage			1.2		MΩ
I _{DIM_L}	Leakage Current	V _{DIM} = 0		4.2		uA
Switching				<u> </u>		1
	SW Turn-on Resistance	V _{IN} =24V		0.5		- Ω
R _{sw}		V _{IN} =12V		0.5		
SWmean	SW Continuous Current				1.5	Α
ILEAK	SW Leakage Current			0.5	5	uA
Thermal Pro	tection	1			<u> </u>	1
T _{SD}	OTP Threshold			160		°C
T _{SD_hys}	OTP Hysteresis			20		°C

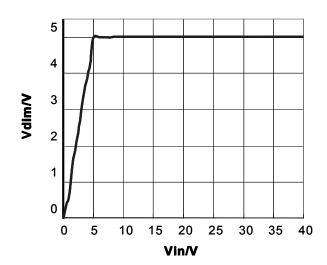
Electrical Characteristics(VIN=12V,T=25°C.(unless otherwise specified)) (Note3, 4)

Note 3: Typical numbers are measured at 25°C as standard parameter.

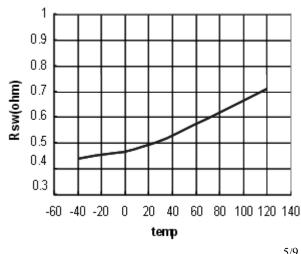

Note 4 : In this datasheet, design methods, measurement and statistical analysis guarantee the typical value while measurement guarantees the range between the minimum and maximum.

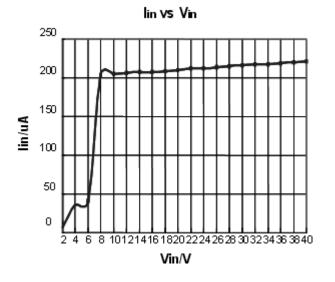

ШÎ

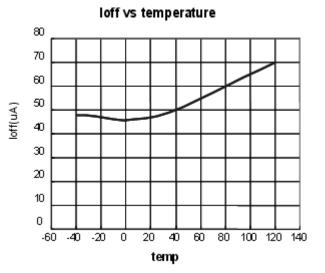
4 5


loff/uA

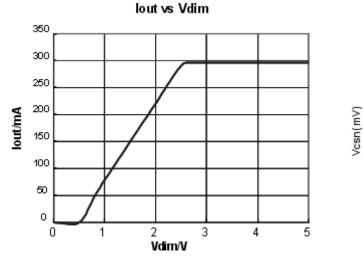
Typical Operating Characteristics




Steady, keep you advance


10 11 12 13 14 15 20 25 30 35 40

Vin/V



ШÎ

Vcsn vs temperature

 114

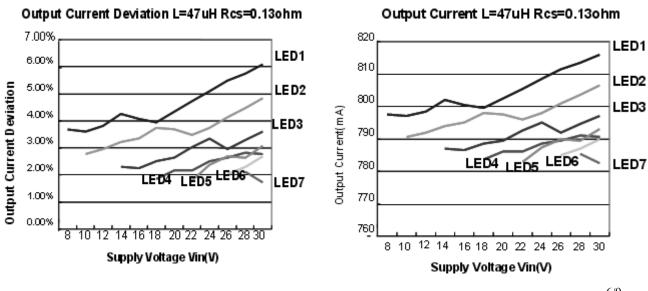
 113

 112

 111

 111

 110


 109

 108

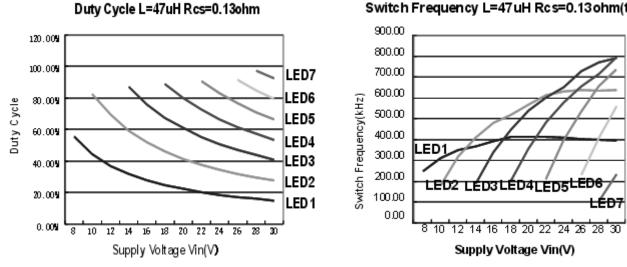
20 40 60 80 100 120

temp

σ

115

107


-60 -40 -20

Steady, keep you advance

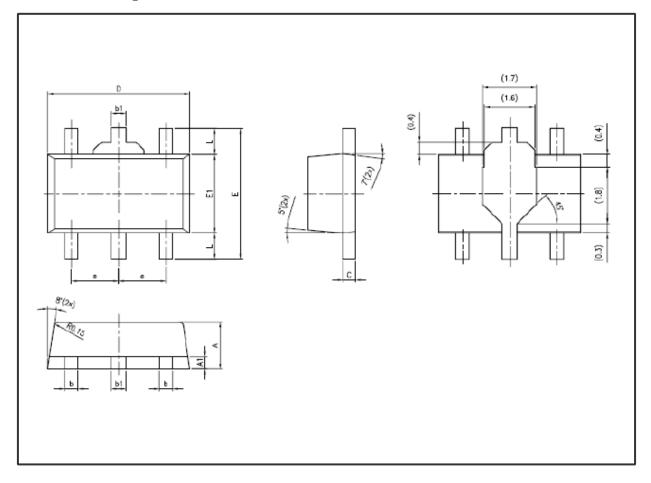
140

Switch Frequency L=47uH Rcs=0.13ohm(tttt25)

lout vs Duty Cycle __100Hz ___20KHz ___50KHz Output Current/M Dim Daty Cycle/%

Operation Description

Applying WS3215 with inductor (L) and current sensing resistance (RS) forms a self-oscillating step-down continuous current mode inductive LED controller. When Vin increases at the beginning, LED output current are zero initially through inductor, sensing resistance. Meanwhile, the CS comparator turns high, the voltage of SW is low and the internal power MOSFET is conductible. Through the external components and internal power MOSFET to GND, output current gets greater with a constant rate determined by the voltage difference between inductor's two terminals, then generate a sensing voltage on the RS. If (Vin-Vcsn)>110mV, CS comparator turns low and internal power MOSFET turn off, the state can not change until (Vin-Vcsn)<90mV. As a result, the Average LED output current can be caculated by the following $Iout = \frac{0.09 + 0.11}{2 \times Rs} = \frac{0.1}{Rs}$ equation:


High-side current sensing circuit is applied for less external components. With 1% accuracy of sensing

resistance, the LED output current can be controlled within 5% variation. A dedicated DIM input accepts a wide range of a DC voltage or pulsed dimming. Applying a voltage of 2.5V or higher to the DIM pin will turn on the power MOSFET completely, however, 0.3V or lower will turn the output off. Therefore, it is available to receive a PWM dimming frequency range from 100Hz to 20KHz. Otherwise, an external resistance can be used to set the LED output current. Linking with the internal pull-up resistance (typically 1.2 Mohm), which is connected to the inner regulated 5V, a voltage applied to the DIM can be achieved. By changing the ratio between the outer and inner resistance, the dimming voltage can be different and brightness of LED can be adjustable.

During the turn-off phase, the quiescent current is only 60uA although the inner reference module is still at work.. For the consideration of reliability, over-temperature protection in WS3215 is necessary. It avoids the WS3215 suffering over-temperature damage and guarantees the maximum LED output current after recovery to normal.

SOT89-5 Package Dimension

符号	毫米				
	最小	典型	最大		
Α	1.40	1.50	1.60		
A1	0.30	0.40	0.50		
b	0.36	0.42	0.48		
b1	0.41	0.47	0.53		
С	0.38	0.40	0.43		
D	4.40	4.50	4.60		
E	_	—	4.25		
E1	2.40	2.50	2.60		
e	1.40	1.50	1.60		
L	0.80		_		